Column Chromatography

In column chromatography the adsorbant is packed into a column and a solution of the mixture is added at the top. An appropriate solvent is passed through the column, washing, or eluting, the compounds down the column. A polar substance that is adsorbed very tightly to the surface will be efficiently retarded by the column, while a nonpolar substance will elute (dissolve in the solvent) very rapidly. By varying the nature of the solid adsorbant and the eluting solvent, a wide variety of resolutions, even of very similar substances, can be carried out.

The gas chromatograph (GC) is a system consisting of a liquid with a high boiling point impregnated on an inert solid support as the stationary phase and helium gas as the mobile phase. The stationary phase is packed into a thin metal column and helium gas is allowed to flow through it. The column is attached to an injection port, and the entire system is heated in an oven. A solution of the mixture is injected into the column through the injection port by means of a syringe and is immediately volatilized. The helium gas then sweeps the components out of the column and past a detector. The polarity of the compounds and their volatility determines how long they are retained by the column. When each component passes the detector, a peak is registered on a recorder. The relative quantities of the components can be determined from the relative areas under the peaks. By varying the polarity of the column and its temperature, many different resolutions can be carried out. Since the capacity of GC columns is very low, the gas chromatograph is used chiefly as an analytical tool, although it can be used for preparative purposes as well. Miniaturized GC instruments have been employed in space probes to analyze the atmospheres of other planets.

For compounds that cannot be volatilized readily, the liquid chromatograph (LC) can be used instead of the gas chromatograph. The stationary phase consists of a finely powdered solid adsorbant packed into a thin metal column and the mobile phase consists of an eluting solvent forced through the column by a high-pressure pump. The mixture to be analyzed is injected into the column and monitored by a detector. Many different LC packings and eluting solvents are available to achieve the desired resolution.

In gel-permeation chromatography, compounds are separated on the basis of their molecular size. Porous beads of the gel are packed into a column and the mixture is added at the top in an appropriate solvent. Large molecules move straight down the column, while small molecules stick in the pores and are retarded.

For compounds that can exist as ions, ion-exchange chromatography can be used to separate them from neutral or oppositely charged compounds. The mixture is added to a column packed with a porous, insoluble resin which has a negatively charged (anionic) group attached to it and an unattached, positively charged (cationic) counterion. A cation from the mixture will exchange with the positive counterion of the resin and will be retarded while neutral and anionic substances are not affected. Ion-exchange resins with exchangeable anions work in a similar manner.

Sections in this article:

The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2012, Columbia University Press. All rights reserved.

See more Encyclopedia articles on: Chemistry: General