diffusion, in chemistry, the spontaneous migration of substances from regions where their concentration is high to regions where their concentration is low. Diffusion is important in many life processes. It occurs, for example, across the alveolar membrane of the lung, which separates the carbon-dioxide-rich blood from the oxygen-rich air. Oxygen diffuses across the membrane and becomes dissolved in the blood carbon dioxide diffuses across the membrane into the air.

The spontaneous redistribution of a substance is due to the random motion of the molecules (or atoms or ions) of the substance. Because of the random nature of the motion of molecules, the rate of diffusion of molecules out of any region in a substance is proportional to the concentration of molecules in that region, and the rate of diffusion into the region is proportional to the concentration of molecules in the surrounding regions. Thus, while molecules continuously flow both into and out of all regions, the net flow is from regions of higher concentration to regions of lower concentration. Generally, the greater the difference in concentration, the faster the diffusion.

Since an increase in temperature represents an increase in the average molecular speed, diffusion occurs faster at higher temperatures. At any given temperature, small, light molecules (such as H 2, hydrogen gas) diffuse faster than larger, more massive molecules (such as N 2, nitrogen gas) because they are traveling faster, on the average (see heat kinetic-molecular theory of gases ). According to Graham's law (for Thomas Graham), the rate at which a gas diffuses is inversely proportional to the square root of the density of the gas.

Diffusion often masks gravitational effects. For example, if a relatively dense gas (such as CO 2, carbon dioxide) is introduced at the bottom of a vessel containing a less dense gas (such as H 2, hydrogen gas), the dense gas will diffuse upward and the less dense gas will diffuse downward. It is true, however, that at equilibrium the two gases will not be uniformly mixed. There will be some variation in the density and composition of the gas mixture at the top of the vessel the gas mixture will be slightly less concentrated, and there will be a slight preponderance of molecules of the less dense gas. These differences, which are due to gravity, are almost impossible to measure in the laboratory, although they interact with other factors in determining the distribution of gases in planetary atmosphere.

Diffusion is not confined to gases it can take place with matter in any state. For example, salt diffuses (dissolves) into water water diffuses (evaporates) into the air. It is even possible for a solid to diffuse into another solid e.g., gold will diffuse into lead, although at room temperature this diffusion is very slow. Generally, gases diffuse much faster than liquids, and liquids much faster than solids. Diffusion may take place through a semipermeable membrane, which allows some, but not all, substances to pass. In solutions, when the liquid solvent passes through the membrane but the solute (dissolved solid) is retained, the process is called osmosis . Diffusion of a solute across a membrane is called dialysis , especially when some solutes pass and others are retained.

The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2012, Columbia University Press. All rights reserved.

See more Encyclopedia articles on: Chemistry: General

Browse by Subject

The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2012, Columbia University Press. All rights reserved.