moon: Internal Structure

Internal Structure

Diffraction of seismic waves provided the first clear-cut evidence for a lunar crust, mantle, and core analogous to those of the earth. The lunar crust is about 45 mi (70 km) thick, making the moon a rigid solid to a greater depth than the earth. The inner core has a radius of about 600 mi (1,000 km), about 2⁄3 of the radius of the moon itself. The internal temperature decreases from 830℃ (1,530℉) at the center to 170℃ (340℉) near the surface. The heat traveling outward near the lunar surface is about half that of the earth but still twice that predicted by current theory. This heat flow is directly related to the rate of internal energy production, so that the internal temperature profile provides information about long-lived radio isotopes and the moon's thermal evolution. The heat-flow measurements indicate that the moon's radioactive content is higher than that of the earth. The moon's magnetic field is a million times weaker than that of the earth, but it varies by a factor of 20 from point to point on the surface. Certain rocks retain a high magnetization, indicating that they crystallized in the presence of magnetic fields much higher than those presently existing on the moon. Mascons are large concentrations of unusually high density that are located below certain of the maria. The mascons may have been created by the implantation of very dense, iron-rich meteorites, whose impact formed the overlying mare basins.

Sections in this article:

The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2024, Columbia University Press. All rights reserved.

See more Encyclopedia articles on: Astronomy: General