vision: Color and Stereoscopic Vision
Color and Stereoscopic Vision
Color vision is based on the ability to discriminate between the various wavelengths that constitute the spectrum. The Young-Helmholtz theory, developed in 1802 by Thomas Young and H. L. F. Helmholtz, is based on the assumption that there are three fundamental color sensations—red, green, and blue—and that there are three different groups of cones in the retina, each group particularly sensitive to one of these three colors. Light from a red object, for example, stimulates the cones that are more sensitive to red than the other cones. Other colors (besides red, green, and blue) are seen when the cone cells are stimulated in different combinations. Only in recent years has conclusive evidence shown that the Young-Helmholtz theory is, indeed, accurate. The sensation of white is produced by the combination of the three primary colors, and black results from the absence of stimulation.
Humans normally have binocular vision, i.e., separate images of the visual field are formed by each eye; the two images fuse to form a single impression. Because each eye forms its own image from a slightly different angle, a stereoscopic effect is obtained, and depth, distance, and solidity of an object are appreciated. Stereoscopic color vision is found primarily among the higher primates, and it developed fairly late on the evolutionary scale.
Sections in this article:
- Introduction
- Defects of Vision
- Color and Stereoscopic Vision
- The Role of the Optic Nerve and Brain
- The Role of the Retina
- Vision in Humans
- Bibliography
The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2024, Columbia University Press. All rights reserved.
See more Encyclopedia articles on: Anatomy and Physiology