energy: Potential and Kinetic Energy

Potential and Kinetic Energy

Potential energy is the capacity for doing work that a body possesses because of its position or condition. For example, a stone resting on the edge of a cliff has potential energy due to its position in the earth's gravitational field. If it falls, the force of gravity (which is equal to the stone's weight; see gravitation) will act on it until it strikes the ground; the stone's potential energy is equal to its weight times the distance it can fall. A charge in an electric field also has potential energy because of its position; a stretched spring has potential energy because of its condition. Chemical energy is a special kind of potential energy; it is the form of energy involved in chemical reactions. The chemical energy of a substance is due to the condition of the atoms of which it is made; it resides in the chemical bonds that join the atoms in compound substances (see chemical bond).

Kinetic energy is energy a body possesses because it is in motion. The kinetic energy of a body with mass m moving at a velocity v is one half the product of the mass of the body and the square of its velocity, i.e., KE = 1⁄2mv2. Even when a body appears to be at rest, its atoms and molecules are in constant motion and thus have kinetic energy. The average kinetic energy of the atoms or molecules is measured by the temperature of the body.

The difference between kinetic energy and potential energy, and the conversion of one to the other, is demonstrated by the falling of a rock from a cliff, when its energy of position is changed to energy of motion. Another example is provided in the movements of a simple pendulum (see harmonic motion). As the suspended body moves upward in its swing, its kinetic energy is continuously being changed into potential energy; the higher it goes the greater becomes the energy that it owes to its position. At the top of the swing the change from kinetic to potential energy is complete, and in the course of the downward motion that follows the potential energy is in turn converted to kinetic energy.

Sections in this article:

The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2024, Columbia University Press. All rights reserved.

See more Encyclopedia articles on: Physics