| Share
 

distributive law

distributive law. In mathematics, given any two operations, symbolized by * and ∘, the first operation, *, is distributive over the second, ∘, if a *( bc ) = ( a * b )∘( a * c ) for all possible choices of a, b, and c. Multiplication, ×, is distributive over addition, +, since for any numbers a, b, and c, a ×( b + c ) = ( a × b )+( a × c ). For example, for the numbers 2, 3, and 4, 2×(3+4) = 14 and (2×3)+(2×4) = 14, meaning that 2×(3+4) = (2×3)+(2×4). Strictly speaking, this law expresses only left distributivity, i.e., a is distributed from the left side of ( b + c ); the corresponding definition for right distributivity is ( a + bc = ( a × c )+( b × c ).

The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2012, Columbia University Press. All rights reserved.

More on distributive law from Infoplease:

See more Encyclopedia articles on: Mathematics


Premium Partner Content
HighBeam Research
Documents Images and Maps Reference
(from Newspapers, Magazines, Journals, Newswires, Transcripts and Books)

Research our extensive archive of more than 80 million articles from 6,500 publications.

Additional search results provided by HighBeam Research, LLC. © Copyright 2005. All rights reserved.

24 X 7

Private Tutor

Click Here for Details
24 x 7 Tutor Availability
Unlimited Online Tutoring
1-on-1 Tutoring