superconductivity
Classical superconductivity (superconductivity at temperatures near absolute zero) is displayed by some metals, including zinc, magnesium, lead, gray tin, aluminum, mercury, and cadmium. Other metals, such as molybdenum, may exhibit superconductivity after high purification. More than 50 elements are superconductive at temperatures near absolute; some, such as europium, only under extreme pressure as well. Alloys (e.g., two parts of gold to one part of bismuth) and such compounds as tungsten carbide and lead sulfide may also be superconductors.
Thin films of normal metals and superconductors that are brought into contact can form superconductive electronic devices, which replace transistors in some applications. An interesting aspect of the phenomenon is the continued flow of current in a superconducting circuit after the source of current has been shut off; for example, if a lead ring is immersed in liquid helium, an electric current that is induced magnetically will continue to flow after the removal of the magnetic field. Powerful electromagnets, which, once energized, retain magnetism virtually indefinitely, have been developed using several superconductors.
The 1972 Nobel Prize in Physics was awarded to J. Bardeen, L. Cooper, and S. Schrieffer for their theory (known as the BCS theory) of classical superconductors. This quantum-mechanical theory proposes that at very low temperatures electrons in an electric current move in pairs. Such pairing enables them to move through a crystal lattice without having their motion disrupted by collisions with the lattice. Several theories of high-temperature superconductors have been proposed, but none has been experimentally confirmed.
See J. W. Lynn, ed.,
The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2024, Columbia University Press. All rights reserved.
See more Encyclopedia articles on: Electrical Engineering