science: Science in the Middle Ages

With the eclipse of the Greek and Roman cultures, many of their works passed into the hands of the Muslims, who by the 7th and 8th cent. AD had extended their influence through much of the world surrounding the Mediterranean. All of the Greek works were translated into Arabic, and commentaries were added. Important developments from the East were also transmitted, and the Hindu numeral system was introduced, as well as the manufacture of paper and gunpowder, learned from the Chinese. Scholars gathered at cities like Damascus, Baghdad, and Cairo, at one end of the Mediterranean, and at Cordova and Toledo, in Spain, at the other end. Many astronomical observations were made at different locations, but there was little effort to improve or modify the Greek model of Ptolemy. In medicine important contributions were made by Al-Razi (Rhazes, 865–925) and Ibn-Sina (Avicenna, 980–1037), and in alchemy and pharmacology by Jabir (Geber, 9th cent.), whose work was expanded in the 10th cent. by a mystical sect aligned with the Sufi tradition. At Cairo, Al-Hazen (965–1038) studied optics, particularly the properties of lenses, and Maimonides (1135–1204), the Jewish philosopher, came there from Spain to practice medicine as physician to Saladin, the Sultan. The Arabs thus preserved the scientific works of the Greeks and added to them, and also introduced other contributions from Asia. This body of learning first began to be discovered by Europeans in the 11th cent.

Certain technical innovations during the Early Middle Ages, e.g., development of the heavy plow, the windmill, and the magnetic compass, as well as improvements in ship design, had increased agricultural productivity and navigation and contributed to the rise of cities, with their craft guilds and universities. These changes were more pronounced in N Europe than in the south. The introduction of papermaking (12th cent.) and printing (1436–50) made possible the recording of craft traditions that had been handed down orally in previous centuries. This served to reduce the gap between the artisan classes and the scholar classes and contributed to the development of certain individuals who combined elements of both traditions—the artist-engineers such as Leonardo da Vinci, whose studies of flight and other technological problems were far beyond their time, and the artist-mathematicians, such as Albrecht Dürer, who examined the laws of perspective and wrote a textbook on geometry. Many artists came to study anatomy in detail.

Beginning in the 12th cent. the Arabic versions of Greek works were translated into Latin, an edition of Ptolemy's Almagest being translated at Toledo, and one of Aristotle's biological works in Sicily. Leonardo da Pisa (Fibonacci) presented some of the new Hindu-Arabic mathematics in the early 13th cent., and the medical and alchemical works were also translated. Also in the 13th cent., a trend toward empiricism was promoted by Roger Bacon and others, but this was short-lived. The dominant philosophy of science and other fields was the Christianized version of Aristotelian philosophy created by Albertus Magnus and Thomas Aquinas in the 13th cent. This view tended to treat scientific theories as extensions of philosophy and, for example, postulated the existence of angelic agents to account for the movements of the heavenly bodies. Even so, the craft traditions continued to develop in an independent manner, particularly medieval alchemy, and certain schools grew up that were not dominated by the main scholastic philosophy. The rebirth, or Renaissance, of learning spread throughout the West from the 14th to the 16th cent. and was further enhanced by the great voyages of discovery that began in the 15th cent.

The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2012, Columbia University Press. All rights reserved.

See more Encyclopedia articles on: Science: General