mechanics: Modern Mechanics

Modern mechanics dates from the work of Galileo, Simon Stevin, and others in the late 16th and early 17th cent. By means of experiment and mathematical analysis, Galileo made a number of important studies, particularly of falling bodies and projectiles. He enunciated the principle of inertia and used it to explain not only the mechanics of bodies on the earth but also that of celestial bodies (which, however, he believed moved in uniform circular orbits). The philosopher René Descartes advocated the application of the mathematical-mechanical approach to all fields and founded the mechanistic philosophy that was so important in science for the next two centuries or more.

The first system of modern mechanics to explain successfully all mechanical phenomena, both terrestrial and celestial, was that of Isaac Newton, who in his Principia (Mathematical Principles of Natural Philosophy, 1687) derived three laws of motion and showed how the principle of universal gravitation can be used to explain both the behavior of falling bodies on the earth and the orbits of the planets in the heavens. Newton's system of mechanics was developed extensively over the next two centuries by many scientists, including Johann and Daniel Bernoulli, Leonhard Euler, J. le Rond d'Alembert, J. L. Lagrange, P. S. Laplace, S. D. Poisson, and W. R. Hamilton. It found application to the explanation of the behavior of gases and thermodynamics in the statistical mechanics of J. C. Maxwell, Ludwig Boltzmann, and J. W. Gibbs.

In 1905, Albert Einstein showed that Newton's mechanics was an approximation, valid for cases involving speeds much less than the speed of light; for very great speeds the relativistic mechanics of his theory of relativity was required. Einstein showed further in his general theory of relativity (1916) that gravitation could be explained in terms of the effect of a massive body on the framework of space and time around it, this effect applying not only to the motions of other bodies possessing mass but also to light. In the quantum mechanics developed during the 1920s as part of the quantum theory , the motions of very tiny particles, such as the electrons in an atom, were explained using the fact that both matter and energy have a dual nature—sometimes behaving like particles and other times behaving like waves. Two different but mathematically equivalent forms of quantum mechanics were elaborated, the wave mechanics of Erwin Schrödinger and the matrix mechanics of Werner Heisenberg.

The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2012, Columbia University Press. All rights reserved.

See more Encyclopedia articles on: Physics