Layers of the Earth's Atmosphere

The earth's atmosphere is composed of distinct layers. The troposphere extends upward from the earth to a height of about 5 mi (8.1 km) at the poles, to about 7 mi (11.3 km) in mid-latitudes, and to about 10 mi (16.1 km) at the equator. The air in the troposphere is in constant motion, with both horizontal and vertical air currents (see wind). Throughout the troposphere temperature decreases with altitude at an average rate of about 3.6°C per 1,000 ft (2°C per 305 m), reaching about −70°C (−57°C) at its apex, the tropopause. Above the troposphere is an atmospheric ozone layer, which is also the lower layer of the stratosphere. Temperature changes little with altitude in the stratosphere, which extends upward to about 30 mi (50 km). Above this layer is the mesosphere which extends to about 50 mi (80 km above the earth); the temperature sharply decreases from around 20°C (10°C) at the base of the mesosphere to −166°C (−110°C) before it begins to rise at the top of the mesosphere. The next layer is the thermosphere, which extends upward from the mesosphere to about 400 mi (640 km); its temperature increases rapidly with altitude because of the absorption of shortwave radiation by ionization processes, although, because of the thinness of the air, little heat energy is available. The final layer is the exosphere, which gradually gets thinner as it reaches into the vacuum of space at around 435 mi (700 km) above the earth's surface; the atmosphere is so attenuated at this altitude that the average distance air molecules travel without colliding is equal to the radius of the earth. Although some gas molecules and particles out to about 40,000 mi (64,400 km) are trapped by the earth's gravitational and magnetic fields, the density of the atmosphere at an altitude of about 6,000 mi (9,700 km) is comparable to that of interplanetary space.

Certain layers of the atmosphere within the main regions exhibit characteristic properties. Aurorae (see aurora borealis), or northern and southern lights, appear in the thermosphere. The ionosphere is in the range (50–400 mi/80–640 km) that contains a high concentration of electrically charged particles (ions); these particles are responsible for reflecting radio signals important to telecommunications.

Sections in this article:

The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2023, Columbia University Press. All rights reserved.

See more Encyclopedia articles on: Atmospheric and Space Sciences: Atmosphere