map projection: Conic Projection

In a conic projection a paper cone is placed on a globe like a hat, tangent to it at some parallel, and a point source of light at the center of the globe projects the surface features onto the cone. The cone is then cut along a convenient meridian and unfolded into a flat surface in the shape of a circle with a sector missing. All parallels are arcs of circles with a pole (the apex of the original cone) as their common center, and meridians appear as straight lines converging toward this same point. Some conic projections are conformal (shape preserving); some are equal-area (size preserving). A polyconic projection uses various cones tangent to the globe at different parallels. Parallels on the map are arcs of circles but are not concentric.

The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2012, Columbia University Press. All rights reserved.

See more Encyclopedia articles on: Maps and Mapping