| Share
 

space exploration

Human Space Exploration

Human spaceflight has progressed from the simple to the complex, starting with suborbital flights; subsequent highlights included the launching of a single astronaut in orbit, the launching of several astronauts in a single capsule, the rendezvous and docking of two spacecraft, the attainment of lunar orbit, and the televised landing of an astronaut on the moon. The first person in earth orbit was a Soviet cosmonaut, Yuri Gagarin, in Vostok 1 on Apr. 12, 1961. The American Mercury program had its first orbital success in Feb., 1962, when John Glenn circled the earth three times; a flight of 22 orbits was achieved by Mercury in May, 1963. In Oct., 1964, three Soviet cosmonauts were launched in a Voskhod spacecraft. During the second Voskhod flight in Mar., 1965, a cosmonaut left the capsule to make the first "walk in space."

The first launch of the Gemini program, carrying two American astronauts, occurred a few days after the Soviet spacewalk. The United States made its first spacewalk during Gemini 4, and subsequent flights established techniques for rendezvous and docking in space. The first actual docking of two craft in space was achieved in Mar., 1966, when Gemini 8 docked with a crewless vehicle. In Oct., 1967, two Soviet Cosmos spacecraft performed the first automatic crewless rendezvous and docking. Gemini and Voskhod were followed by the American Apollo and the Soviet Soyuz programs, respectively.

The Apollo Program

In 1961, President Kennedy had committed the United States to the goal of landing astronauts on the moon and bringing them safely back to earth by the end of the decade. The resulting Apollo program was the largest scientific and technological undertaking in history. Apollo 8 was the first craft to orbit both the earth and the moon (Dec., 1968); on July 20, 1969, astronauts Neil A. Armstrong and Edwin E. ("Buzz") Aldrin, Jr., stepped out onto the moon, while a third astronaut, Michael Collins, orbited the moon in the command ship. In all, there were 17 Apollo missions and 6 lunar landings (1969–72). Apollo 15 marked the first use of the Lunar Rover, a jeeplike vehicle. The scientific mission of Apollo centered around an automated geophysical laboratory, ALSEP (Apollo Lunar Surface Experimental Package). Much was learned about the physical constitution and early history of the moon, including information about magnetic fields, heat flow, volcanism, and seismic activity. The total lunar rock sample returned to earth weighed nearly 900 lb (400 kg).

Apollo moon flights were launched by the three-stage Saturn V rocket, which developed 7.5 million lb (3.4 million kg) of thrust at liftoff. At launch, the total assembly stood 363 ft (110 m) high and weighed more than 3,000 tons. The Apollo spacecraft itself weighed 44 tons and stood nearly 60 ft (20 m) high. It was composed of three sections: the command, service, and lunar modules. In earth orbit, the lunar module (LM) was freed from its protective compartment and docked to the nose of the command module. Once in lunar orbit, two astronauts transferred to the LM, which then detached from the command module and descended to the lunar surface. After lunar exploration, the descent stage of the LM remained on the moon, while the ascent stage was jettisoned after returning the astronauts to the command module. The service module was jettisoned just before reentering the earth's atmosphere. Thus, of the huge craft that left the earth, only the cone-shaped command module returned.

The Soyuz Program

Until late 1969 it appeared that the USSR was also working toward landing cosmonauts on the moon. In Nov., 1968, a Soviet cosmonaut in Soyuz 3 participated in an automated rendezvous and manual approach sequence with the crewless Soyuz 2. Soyuz 4 and 5 docked in space in Jan., 1969, and two cosmonauts transferred from Soyuz 5 to Soyuz 4 ; it was the first transfer of crew members in space from separately launched vehicles. But in July, 1969, the rocket that was to power the lunar mission exploded, destroying an entire launch complex, and the USSR abandoned the goal of human lunar exploration to concentrate on orbital flights. The program suffered a further setback in June, 1971, when Soyuz 11 accidentally depressurized during reentry, killing all three cosmonauts. In July, 1975, the United States and the USSR carried out the first internationally crewed spaceflight, when an Apollo and a Soyuz spacecraft docked while in earth orbit. Later Soyuz spacecraft have been used to ferry crew members to and from Salyut, Mir, and the International Space Station.

Space Stations

After the geophysical exploration of the moon via the Apollo program was completed, the United States continued human space exploration with Skylab, an earth-orbiting space station that served as workshop and living quarters for three astronauts. The main capsule was launched by a booster; the crews arrived later in an Apollo-type craft that docked to the main capsule. Skylab had an operational lifetime of eight months, during which three three-astronaut crews remained in the space station for periods of about one month, two months, and three months. The first crew reached Skylab in May, 1972.

Skylab 's scientific mission alternated between predominantly solar astrophysical research and study of the earth's natural resources; in addition, the crews evaluated their response to prolonged conditions of weightlessness. The solar observatory contained eight high-resolution telescopes, each designed to study a different part of the spectrum (e.g., visible, ultraviolet, X-ray, or infrared light). Particular attention was given to the study of solar flares (see sun). The earth applications, which involved remote sensing of natural resources, relied on visible and infrared light in a technique called multispectral scanning (see space science). The data collected helped scientists to forecast crop and timber yields, locate potentially productive land, detect insect infestation, map deserts, measure snow and ice cover, locate mineral deposits, trace marine and wildlife migrations, and detect the dispersal patterns of air and water pollution. In addition, radar studies yielded information about the surface roughness and electrical properties of the sea on a global basis. Skylab fell out of orbit in July, 1979; despite diligent efforts, several large pieces of debris fell on land.

After that time the only continuing presence of humans in earth orbit were the Soviet Salyut and Mir space stations, in which cosmonauts worked for periods ranging to more than 14 months. In addition to conducting remote sensing and gathering medical data, cosmonauts used their microgravity environment to produce electronic and medical artifacts impossible to create on earth. In preparation for the International Space Station (ISS)—a cooperative program of the United States, Russia, Japan, Canada, Brazil, and the ESA—astronauts and cosmonauts from Afghanistan, Austria, Britain, Bulgaria, France, Germany, Japan, Kazakhstan, Syria, and the United States worked on Mir alongside their Russian counterparts. Assembly of the ISS began in Dec., 1998, with the linking of an American and a Russian module (see space station) Once the ISS was manned in 2000, maintaining Mir in orbit was no longer necessary and it was made to decay out of orbit in Mar., 2001.

The Space Shuttle

After the Skylab space station fell out of orbit in 1979, the United States did not resume sending astronauts into space until 1981, when the space shuttle, capable of ferrying people and equipment into orbit and back to earth, was launched. The shuttle itself was a hypersonic delta-wing airplane about the size of a DC-9. Takeoff was powered by three liquid-fuel engines fed from an external tank and two solid-fuel engines; the last were recovered by parachute. The shuttle itself returned to earth in a controlled glide, landing either in California or in Florida.

The shuttle put a payload of up to 25 tons (22,700 kg) in earth orbit below 600 mi (970 km); the payload was then boosted into final orbit by its own attached rocket. The Galileo probe, designed to investigate Jupiter's upper atmosphere, was launched from the space shuttle. Astronauts also used the shuttle to retrieve and repair satellites, to experiment with construction techniques needed for a permanent space station, and to conduct scientific experiments during extended periods in space.

At first it was hoped that shuttle flights could operate on a monthly basis, but schedule pressures contributed to the explosion of the Challenger shuttle in 1986, when cold launch conditions led to the failure of a rubber O-ring, and the resulting flame ruptured the main fuel tank. The shuttle program was suspended for three years, while the entire system was redesigned. The shuttle fleet subsequently operated on approximately a bimonthly schedule. A second accident occurred in 2003, when Columbia was lost during reentry because damaged heat shielding on the left wing, which had been damaged by insulation shed from the external fuel tank, failed to prevent superheated gas from entering the wing; the hot gas structurally weakened the wing and caused the shuttle to break up. Shuttle flights resumed in July, 2005, but new problems with fuel tank insulation led NASA to suspend shuttle launches for a year. The last shuttle flight was in July, 2011.

In 2004, President George W. Bush called for a return to the moon by 2020 and the establishment of a base there that would be used to support the human exploration of Mars. The following year NASA unveiled a $104 billion plan for a lunar expedition that resembled that Apollo program in many respects, except that two rockets would be used to launch the crew and lunar lander separately.

In June, 2004, SpaceShipOne, a privately financed spacecraft utilizing a reusable vehicle somewhat similar in concept to the shuttle, was launched into suborbital flight from the Mojave Desert in California. Unlike the shuttle, SpaceShipOne was carried aloft by a reusable jet mothership (White Knight) to 46,000 ft (13.8 km), where it was released and fires its rocket engine. The spacecraft was designed by Bert Rutan and built by his company, SCALED Composites. The vehicle's 90-minute flight was the first successful nongovernmental spaceflight. SpaceShipTwo, based on SpaceShipOne, is being developed for commercial tourist flights; it made its first powered flight in 2013. Another spacecraft was privately developed by Space Exploration Technologies, or SpaceX, in coordination with NASA. The company's Falcon 9 rocket had its first successful launch, from Cape Canaveral, in June, 2010. In Dec., 2010, SpaceX launched the Dragon space capsule, using a Falcon 9 rocket, and successfully returned the capsule to earth after almost two orbits. In May, 2012, the Dragon made its first resupply trip to the space station, returning with experiments and other items. Orbital Sciences Corp. (OSC) is also developing a cargo capsule, Cygnus, in cooperation with NASA; OSC's Antares rocket, which will be used to launch Cygnus, had its first test in Apr., 2013.

The Chinese Space Program

China launched its first satellite in 1970 and then began the Shuguang program to put an astronaut into space, but the program was twice halted, ending in 1980. In the 1990s, however, China began a new program, and launched the crewless Shenzhou 1, based on the Soyuz, in 1999. The Shenzhou, like the Soyuz, is capable of carrying a crew of three. In Oct., 2003, Shenzhou 5 carried a single astronaut, Yang Liwei, on a 21-hr, 14-orbit flight, making China only the third nation to place a person in orbit. A second mission, involving two astronauts, occurred in Oct., 2005. China also launched an unmanned moon mission in Oct., 2007. In June, 2012, the three-person Shenzhou 9, which included China's first woman astronaut, manually docked with the Tiangong 1 laboratory module.

Sections in this article:

The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2012, Columbia University Press. All rights reserved.

More on space exploration Human Space Exploration from Infoplease:

See more Encyclopedia articles on: Space Exploration

24 X 7

Private Tutor

Click Here for Details
24 x 7 Tutor Availability
Unlimited Online Tutoring
1-on-1 Tutoring