| Share
 

corrosion

corrosion, atmospheric oxidation of metals (see oxidation and reduction). By far the most important form of corrosion is the rusting of iron. Rusting is essentially a process of oxidation in which iron combines with water and oxygen to form rust, the reddish-brown crust that forms on the surface of the iron. Rust, a chemical compound, is a hydrated ferric oxide Fe2O3· n H2O, where n is usually 11/2. The chemical mechanism of rusting is not fully known, but is thought to involve oxidation of metallic iron to ferrous ion (Fe++) and reaction of the ferrous ion with oxygen and water to form rust. The reaction is catalyzed by water, acids, and metals (e.g., copper and tin) below iron in the electromotive series. Because iron is so widely used, e.g., in building construction and in tools, its protection against rusting is important. Although metals (e.g., aluminum, chromium, and zinc) above iron in the electromotive series corrode more readily than iron, their oxides form a tenuous coating that protects the metal from further attack. Rust is brittle and flakes off the surface of the iron, continually exposing a fresh surface. Rusting can be prevented by excluding air and water from the iron surface, e.g., by painting, oiling, or greasing, or by plating the iron with a protective coating of another metal. Metals used for plating include chromium, nickel, tin, and zinc. Zinc plating is called galvanizing. Many alloys of iron are resistant to corrosion. Stainless steels are alloys of iron with such metals as chromium and nickel; they do not corrode because the added metals help form a hard, adherent oxide coating that resists further attack. The iron hulls of ships can be protected against rusting by attaching magnesium strips to the underside of the vessel. An electric current is generated, with the magnesium and iron acting as electrodes and seawater acting as the electrolyte. Because magnesium is above iron in the electromotive series, it serves as a "sacrificial anode" and is oxidized in preference to the iron. This is called cathodic protection, since the iron serves as the cathode and thus escapes oxidation. This method is also used to protect the pipes of electric generating plants where saltwater is used as a coolant.

The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2012, Columbia University Press. All rights reserved.

More on corrosion from Infoplease:

See more Encyclopedia articles on: Chemistry: General


Premium Partner Content
HighBeam Research
Documents Images and Maps Reference
(from Newspapers, Magazines, Journals, Newswires, Transcripts and Books)

Research our extensive archive of more than 80 million articles from 6,500 publications.

Additional search results provided by HighBeam Research, LLC. © Copyright 2005. All rights reserved.

24 X 7

Private Tutor

Click Here for Details
24 x 7 Tutor Availability
Unlimited Online Tutoring
1-on-1 Tutoring