| Share
 

colloid

Properties of Colloids

One property of colloid systems that distinguishes them from true solutions is that colloidal particles scatter light. If a beam of light, such as that from a flashlight, passes through a colloid, the light is reflected (scattered) by the colloidal particles and the path of the light can therefore be observed. When a beam of light passes through a true solution (e.g., salt in water) there is so little scattering of the light that the path of the light cannot be seen and the small amount of scattered light cannot be detected except by very sensitive instruments. The scattering of light by colloids, known as the Tyndall effect, was first explained by the British physicist John Tyndall. When an ultramicroscope (see microscope) is used to examine a colloid, the colloidal particles appear as tiny points of light in constant motion; this motion, called Brownian movement, helps keep the particles in suspension. Absorption is another characteristic of colloids, since the finely divided colloidal particles have a large surface area exposed. The presence of colloidal particles has little effect on the colligative properties (boiling point, freezing point, etc.) of a solution.

The particles of a colloid selectively absorb ions and acquire an electric charge. All of the particles of a given colloid take on the same charge (either positive or negative) and thus are repelled by one another. If an electric potential is applied to a colloid, the charged colloidal particles move toward the oppositely charged electrode; this migration is called electrophoresis. If the charge on the particles is neutralized, they may precipitate out of the suspension. A colloid may be precipitated by adding another colloid with oppositely charged particles; the particles are attracted to one another, coagulate, and precipitate out. Addition of soluble ions may precipitate a colloid; the ions in seawater precipitate the colloidal silt dispersed in river water, forming a delta. A method developed by F. G. Cottrell reduces air pollution by removing colloidal particles (e.g., smoke, dust, and fly ash) from exhaust gases with electric precipitators. Particles in a lyophobic system are readily coagulated and precipitated, and the system cannot easily be restored to its colloidal state. A lyophilic colloid does not readily precipitate and can usually be restored by the addition of solvent.

Thixotropy is a property exhibited by certain gels (semisolid, jellylike colloids). A thixotropic gel appears to be solid and maintains a shape of its own until it is subjected to a shearing (lateral) force or some other disturbance, such as shaking. It then acts as a sol (a semifluid colloid) and flows freely. Thixotropic behavior is reversible, and when allowed to stand undisturbed the sol slowly reverts to a gel. Common thixotropic gels include oil well drilling mud, certain paints and printing inks, and certain clays. Quick clay, which is thixotropic, has caused landslides in parts of Scandinavia and Canada.

The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2012, Columbia University Press. All rights reserved.

More on colloid Properties of Colloids from Infoplease:

  • colloid: Properties of Colloids - Properties of Colloids One property of colloid systems that distinguishes them from true solutions ...
  • colloid - colloid colloid [Gr.,=gluelike], a mixture in which one substance is divided into minute particles ...

See more Encyclopedia articles on: Chemistry: General

24 X 7

Private Tutor

Click Here for Details
24 x 7 Tutor Availability
Unlimited Online Tutoring
1-on-1 Tutoring